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Abstract - In production software development, when handling large-scale data, performance becomes an essential 

consideration. Given the rate at which data is generated and consumed today in modern cloud based systems, it, in fact, 

becomes an essential requirement. The choice of tools, algorithm design and programming patterns can all help in gaining as 

much optimization as possible within an application. Concurrency plays a vital role in software and resource optimization. 

Traditional concurrency models use locks with multithreading over shared memory as the synchronization primitive. The 

Communicating Sequential Processes (CSP) model uses communication as the synchronization primitive. This article delves 

briefly into the theory of CSP. This is followed by a discussion on how to query and process big chunks of data from a 

database in an optimal manner using interprocess communication. The article also describes a case study using channels, an 

interprocess communication technique that uses message passing (based on CSP) with the concurrency constructs of the Go 

programming language. 

Keywords - Channels, Communicating sequential processes, Concurrency, Data processing, Interprocess communication, 

Optimization.

1. Introduction 
In computer science, the desire for greater speed in 

executing tasks led to the introduction of parallelism [1]. 

Concurrency is the useful mechanism of dividing a task into 

smaller tasks that can be run independently and allowing 

them to progress at practically the same time. Concurrency is 

not the same as pure parallelism, where the different tasks 

execute simultaneously (typically in a multiprocessor 

system). An important feature of concurrent program 

execution is that it gives rise to indeterminacy in the behavior 

and outcome of a program. 
 

The traditional concurrency model relies upon 

synchronization via locks (mutex, semaphore, condition 

variable, monitor, etc.) over a shared memory location. In 

1978, C. A. R. Hoare introduced a model and formal 

language for using communication as the synchronization 

primitive.  
 

Decades later today, memory based synchronization 

remains the most popular choice in programming. 

Nonetheless, the communication-based concurrency model 

did find adoption in some well-known programming 

languages, including Go, a newer language developed in the 

last two decades. The language creators emphasize the 

linguistic simplicity of the notation. 

In the following sections, the concepts and notations of 

CSP are discussed in brief. Then, a case study is presented, 

including pseud code, which describes optimization methods 

for a practical and common scenario of querying bulk data 

from a database and processing them using interprocess 

communication techniques based on the previously 

referenced communication-based concurrency methodology. 

2. Communicating Sequential Processes 
Communicating Sequential Processes is a programming 

language model first introduced by C. A. R. Hoare in 1978, 

which described a parallel composition of communicating 

sequential processing as a fundamental program structuring 

method using input and output as basic primitives of 

programming [1]. The paper described a model using 

communication via strictly synchronous message passing as 

the basic concurrency primitive and provided recipes for 

solutions to several common programming problems, like 

bounded buffer, dining philosophers, etc., using the proposed 

model. In this version of CSP, messages were exchanged 

between specific process identities versus any particular 

middle entity, like a port number or a channel. The notation 

for an input command was defined as: 

< 𝑠𝑜𝑢𝑟𝑐𝑒_𝑝𝑟𝑜𝑐𝑒𝑠𝑠 >? < 𝑡𝑎𝑟𝑔𝑒𝑡 𝑣𝑎𝑙𝑢𝑒 > 
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Whereas an output command was defined as: 

< 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛_𝑝𝑟𝑜𝑐𝑒𝑠𝑠 > ! < 𝑣𝑎𝑙𝑢𝑒 > 

This initial concurrent programming model led to the 

development of a formal mathematical model in the 

following years. CSP, as known today, refers to this 

mathematical model. The model uses process algebra to 

define semantics for various processes and their interaction 

with each other and with their environment. It describes 

methods to consider indeterminacy within a concurrent 

system. The model’s core principle lies in the fact that a 

sequential composition of instructions can correctly represent 

the parallel composition of subsystems. It conceptualizes the 

idea of decomposing a computer system into subsystems 

running concurrently and constantly interacting with one 

another and, more importantly, with their common 

environment [1]. 

2.1. Primitives and Operators 

CSP defines an event to be the fundamental unit of a 

process, and that all events are regarded as instantaneous and 

indivisible. Furthermore, the behavior of any process up to 

some moment in time can be recorded as a trace (the 

sequence of all events that happened during and leading up to 

that moment in time). The behavior and transitions of the 

processes are described using these primitives and algebraic 

operators. Operators are defined to represent interleaving 

(completely independent) processes and hiding of events 

(abstraction via making an event unobservable), among 

others. A fundamental notation of CSP defines a system 

engaging in event e and then behaving like process P using a 

prefix: 

𝑒−> 𝑃 (𝑒 𝑡ℎ𝑒𝑛 𝑃) 

A deterministic choice allows for a process to evolve 

into one or the other form based on an initial event. The 

external environment is allowed to resolve the choice by 

selecting the initial event. 

𝑃 □ 𝑄 

A nondeterministic choice is one in which the external 

environment has no control over. Thus, abstraction within a 

system can be achieved by deciding to “ignore or conceal” 

the nondeterministic behavior non-relevant to the user. [1] 

𝑃 ⊓  𝑄 

The communication between processes is described as 

happening via a channel (synchronized) using message 

passing, with buffering as an option. 

2.2. Limitations 

In his original paper [1], Hoare recognized the fact that 

in the CSP model, processes have the possibility of ending 

up in a deadlock state. This would happen when a group of 

processes that are attempting to communicate with each other 

never actually correspond, in effect being in a wait-forever 

state. 

 

Due to its performance overhead, CSP was only adopted 

in a few programming languages early on, and the memory-

based concurrency models remained the prime method for 

obtaining concurrency. 

3. CSP implementation in Programming 

Languages 
The CSP model discussed was adopted early in 

programming languages such as Ocamm and Erlang. Some 

programming languages like Go (a modern programming 

language developed at Google) provide higher level 

communication-based concurrency primitives in addition to 

the traditional memory based synchronization constructs. 

Following the basic theory of CSP, which allows for the 

“parallel composition of subsystems” to be correctly 

represented via a “sequential composition of instructions” in 

a system wherein the components interact with one another - 

the result of a data race free Go program is deemed similar to 

that of a system where all the “goroutines are multiplexed 

onto a single processor” and hence run sequentially, 

accounting for the interactions between them. This behavior 

is technically termed as “DRF-SC (data race-free programs 

execute in a sequentially consistent manner)” [5]. 

 

The concurrency primitives of Go mainly include 

goroutines and channels. The shared memory based 

constructs like mutex and condition variable 

implementations are also present in the language as part of 

the sync package. However, the language creators prefer the 

use of channels over the other primitives. 

3.1. Goroutines 

Goroutines are green threads managed by the Go 

language runtime. The runtime manages the lifecycle and 

multiplexes the goroutines onto low-level operating system 

threads. Direct OS (Operating System) threads are not 

exposed by the language APIs (Application Programming 

Interface). The goroutines can interact with one another and 

establish a relative order for execution using various 

synchronization mechanisms such as a communication-based 

channel or memory based locks, like mutex. 

3.2. Channels 

Channels in Go are directly inspired by those mentioned 

above: Communicating Sequential Processes (CSP) formal 

language in computer science. It is an interprocess 

communication technique based on message passing. 

Messages can optionally be stored in a FIFO (First-In-First-

Out) buffer, and sends are blocked in Go when the buffer is 

full. It follows the principle described in Hoare’s original 

paper [1], which states that communicating input and output 

commands must be synchronized, and a delay must be 
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introduced when one of them is ready before the other. The 

delay ends when the other command either becomes ready to 

process the message or is terminated. Input and output 

commands in the previous statement are analogous to 

receiving and sending on a channel. 

Multiple channels can be chained together to create a 

pipeline. Although Go’s channel implementation does not 

implement the actor model in concurrent systems, it can be 

simulated using this construct if desired. 

According to the official Go memory model reference: 

“the kth receive on a channel with capacity C is synchronized 

before the k+Cth send from that channel completes” [5]. It 

should be noted that this creates a perfect construct for 

implementing a counting semaphore using buffered channels 

in Go. The maximum and active semaphore counts can be 

represented by the buffer size and current message count in 

the channel, respectively. Sending to the channel indicates 

acquiring the semaphore, and receiving from the channel is 

analogous to releasing the semaphore. The same approach 

can be generalized to limit concurrency as well. The idea of a 

counting semaphore implementation using communication-

based concurrency is also mentioned in Hoare’s original 

paper on CSP [1]. 

With this brief introduction to concurrency concepts, the 

proceeding topics will cover the practical scenario of 

handling large scale data in a software system. The following 

discussion and examples demonstrate how to query and 

process data of the order of tens or even hundreds of 

thousands of records with efficient resource utilization using 

interprocess communication. In order to keep the discussion 

simple, all database interactions are in abstract form, while 

the main emphasis lies on how the various processes 

communicate with each other. 

4. Case Study 
An application relies on large amounts of data stored in 

a database table and needs to query and process the data on a 

daily basis. Examples may include a system that reads from a 

daily record of Amazon book reviews or social media feeds 

and performs sentiment analysis on each record. Loading the 

entire dataset into memory is not practical due to its size. 

Furthermore, the sentiment analysis process may involve 

interaction with an external system, which implies significant 

I/O (input/output) operations will occur. 

 

5. Solution Brief 
The problem of reading large datasets with limited 

memory can be solved by iterating or paginating over the 

dataset via a database cursor instead of a single load. 

Furthermore, the task of fetching the records from the 

database can be decoupled from the processing of those 

records. As records are fetched iteratively, they must be 

processed with as minimum resource usage as possible. This 

can be achieved via grouping the records into batches, 

separation of concerns by delegating processing logic to 

another process or subtask and carrying out some or all of the 

tasks concurrently. Lastly, all subtasks involved must 

communicate and share data in a synchronized manner. 

 

6. Abstractions 
All mainstream languages provide connector libraries to 

interact with major databases. Consider these API contracts 

in order to interact with a database. DBRowsCursor is an 

interface that spells out the API contracts in order to operate 

on the results from a database query. 

type DBRowsCursor interface { 

 Close() 

 Next() 

 Scan(any) error 

 Err() error 

} 

Result is an abstract data type to encapsulate a single record 

of data inside a Go struct. 

type Result struct { // contains fields mapping to database columns} 

dbQuerier defines a function type, the implementation of 

which should allow for querying a database table and 

returning the resulting data, including any errors. 

// the implementing function should know how to retrieve data from 

a database 

type dbQuerier func() (DBRowsCursor, error) 

7. Fetching Data and Iterating Over the Result 

Set 
It is not uncommon to see practical implementations in 

which a large request is made to the database, and the entire 

result set is loaded into memory for processing. This 

approach has limitations and can utilize too many resources 

if careful attention is not paid. It will simply not work when 

the result set in question is in the order of thousands or more. 

So, instead, it is appropriate to request the data one row at a 

time via a cursor. Consider a run query() pseudo function 

which accepts these arguments: 

● querier - a function that knows how to query a database 

and returns a cursor to iterate over the results. 
● resultC - a channel to which results will be sent. 
● errC- a channel to which errors will be sent. 
 

func runQuery(querier dbQuerier, resultC chan *Result, errC chan 

error) { 

 rows, err := querier() 

 if err != nil { 

  errC <- err 

  return 

 } 
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 defer rows.Close() 

 

 for rows.Next() { 

  r := Result{} 

  if err := rows.Scan(&r); err != nil { 

   errC <- err 

  } else { 

   resultC <- &r 

  } 

 } 

 if err := rows.Err(); err != nil { 

  errC <- err 

 } 

} 
Several modern programming languages, including Go, 

support at least some form of functional programming 

paradigm. It can be achieved in Go using first-class 

functions. Therefore, the runQuery implementation is 

simplified by emphasizing result iteration by accepting the 

querier function as an argument. It should be noted that the 

driver implementation used to interact with the database must 

provide the cursor mechanism to advance over the result set 

iteratively. Results are sent over the resultC channel. Any 

errors encountered are sent over the errC channel. 
 

8. Interprocess Communication 
Figure 1 illustrates the interaction between the various 

processes within the application. The main thread drives the 

interaction by calling the corresponding function to fetch the 

data. It also creates goroutines and handles the processing of 

the data as well as errors. The result set is processed in 

batches for optimal performance. Finally, it ensures all tasks 

run to completion by synchronizing and waiting for their 

execution. 

The processBigData() pseudo function performs the driver 

functionalities of: 

● Delegating tasks by creating goroutines. 

● Facilitating the interprocess communication. 

● Handling data processing in batches and errors. 
 

const batchSize = 100 
 

func processBigData() int64 { 

 batch := make([]*Result, 0, batchSize) 

 // make a buffered channel to receive results in batches 

 batchC := make(chan *Result, batchSize) 

 errC := make(chan error) 

 var wg sync.WaitGroup 

 wg.Add(2) 

… 

} 

Two different goroutines are instantiated within this 

function. Goroutine 1 listens for errors encountered over the 

errC channel. The err, ok := <-errC multi-value receives 

expression blocks until a message is available to consume. It 

returns any error in the err variable when available. ok will 

be set as false if the channel is closed, indicating no more 

messages can be received over this channel, thus breaking 

the infinite loop. 

go func() {  // goroutine 1 

  defer wg.Done() 

  for { 

   err, ok := <-errC 

   if !ok { 

    return 

   } 

   // handle the error 

  }}() 

Goroutine 2 listens over batchC, a buffered channel to 

receive database records as they are read. It maintains an in-

memory fixed size buffer and sends off the result batch to 

process when it is full. Sends to a buffered channel are 

blocked when the buffer is full and receives are blocked 

when the buffer is empty (nothing to consume). 

go func() {  // goroutine 2 

  defer wg.Done() 

  for record := range batchC { 

  batch = append(batch, record) 

  if len(batch) == batchSize { 

   if err := processBatch(batch); err != 

nil { // handle the error} 

   batch = batch[:0] 

  } 

}}() 

Instead of batch processing, a fan-out approach can also 

be implemented by spinning off a worker goroutine.  

As per the result received. The channel buffering would 

provide synchronization and safety against overutilization of 

resources by limiting the number of concurrent goroutines 

since sends are blocked when the channel buffer is full. 

The data is retrieved by calling the runQuery() function. 

querierFn := func() (DBRowsCursor, error) { /* implements 

dbQuerier */ } 

 runQuery(querierFn, batchC, errC) 

Once runQuery() completes execution after reading the entire 

result set; the goroutines need to be signaled somehow that 

no more messages will be sent. 

close(batchC)  // marker 1: signals goroutine 2 to exit 

 close(errC)  // marker 2: signals goroutine 1 to exit 

 wg.Wait() // marker 3: wait for goroutines to exit 

gracefully 
 

Closing a channel is analogous to sending a signal to a 

process in Go. At marker 1, channel batchC is closed in order 

to signal goroutine 2 to exit. At marker 2, channel errC is 

closed in order to signal goroutine 1 that no more messages 

are available to send, hence exit. At marker 3, the execution 

waits while the two goroutines complete the in-flight tasks 

and gracefully exit. 
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Fig. 1 Illustration of interprocess communication

 

 Lastly, the last batch of unprocessed records is sent off for 

processing. 
// process last batch if not empty 

 if len(batch) > 0 { 

  if err := processBatch(batch); err != nil { 

   // handle the error 

  }} 

9. Discussion 
The case study described above addresses a common use 

case in modern software systems. Dealing with vast amounts 

of data has become increasingly popular, with applications 

moving to cloud infrastructure and faster computation with 

better hardware and new technologies. In light of these 

advancements, a system must be designed for optimal 

performance.  
 

While applying distributed computing concepts and 

adding more hardware allows for scalability, applications 

must be designed with the goal of extracting optimal 

performance from resources within a single system first. This 

is where concurrency concepts are essential. A big task like 

extracting and processing large amounts of data should be 

split and organized into smaller subtasks. With the use of 

concurrency principles, many of these tasks can be 

progressed in parallel. 
 

While the theory of CSP, introduced by Hoare, forms the 

basis of communication-based concurrency, it is crucial to 

know its limitations and the performance overhead involved. 

CSP also does not allow for the assignment of priorities 

between the concurrent processes involved. In the case study 

discussed, several considerations were made to achieve 

optimal performance: 

• Since available memory is limited, all data was not 

loaded into memory at once; instead an iterative 

approach was taken by using a cursor. 

• The task was split into subtasks by creating a main 

driver thread and two worker threads to handle the data 

and any errors in a decoupled manner. 

• Data sharing was done via communication between all 

threads involved in a synchronized manner using 

channel based concurrency. 

• Asynchronous progression of concurrent tasks was 

allowed with message buffering. 

• Resource usage was optimized, but overuse was limited 

with the use of batching and limited buffer size. 

• The state of all subtasks was carefully controlled by 

signaling (avoiding deadlock) and waiting on the 

graceful completion of all subtasks. 

 

10. Conclusion 
In closing notes, the article presented a demonstration of 

how concurrency mechanisms can be leveraged to achieve 

speed of execution and optimized resource usage within a 

software system. The fact that the system is handling large 

amounts of data or performing resource intensive tasks 

becomes irrelevant if it is designed with careful consideration 

and intelligent application of concurrency paradigms. The 

theory of communicating sequential processes, discussed at 

the beginning of the article, has been the primary influence 

behind channel based concurrency in programming 

languages like Go. Separation of concerns via concurrency 

paired with synchronized message passing and buffering 

allows concurrent tasks to progress simultaneously, thus 

benefiting overall execution speed. An in-depth discussion of 

goroutine 2 goroutine 1 

main thread: 

processBigData() 

runQuery() 

start end 

resultC::buffer

ed chan errC:: 

chan 
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all the various concurrency paradigms is outside the scope of 

this discussion. The practical scenario discussed in this 

article provides insight into one of them - interprocess 

communication with message passing via channels. The 

application of the producer-consumer pattern is shown in the 

interaction of a sender and receiver process via channels. A 

message buffering process was demonstrated, facilitating the 

asynchronous interaction between sender and receiver 

processes. These concepts, when applied correctly, can vastly 

enhance the performance of production applications. This 

pattern has especially found usage in modern cloud based 

applications dealing with large amounts of data with a low 

desired latency. 
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